Small leucine-rich proteoglycans (SLRPs) in uterine tissues during pregnancy in mice.
نویسندگان
چکیده
Remodelling of the extracellular matrix (ECM) occurs during decidualization of the endometrium in mice. Previously we have documented the appearance of large-diameter collagen fibrils around mature decidual cells between day 5 and day 7 of pregnancy. Proteoglycans are important in the regulation of collagen fibrillogenesis, and the present study analysed four members (decorin, biglycan, lumican and fibromodulin) of the family of small leucine-rich proteoglycans (SLRPs) in the uterus from day 1 to day 7 of pregnancy. Decorin was present together with lesser amounts of lumican in the stroma before the onset of decidualization, whereas biglycan and fibromodulin were almost absent. Biglycan and, less significantly, lumican were expressed in decidualized regions of the endometrium, but decorin was absent. Fibromodulin was weakly expressed in the non-decidualized stroma, but only after implantation. Decorin and lumican were strongly expressed in the undifferentiated interimplantation site stroma, whereas biglycan and fibromodulin were expressed only weakly. These results indicate that the SLRP profile of the uterine ECM alters with differentiation of endometrial stromal cells. The large decidual collagen fibrils are thought to arise by lateral association of smaller diameter fibrils. As decorin has been shown to inhibit lateral association of collagen fibrils, its disappearance between day 2 and day 5 of pregnancy may be a prerequisite for the formation of large fibrils in decidua in mice.
منابع مشابه
Modulation of small leucine-rich proteoglycans (SLRPs) expression in the mouse uterus by estradiol and progesterone
BACKGROUND We have previously demonstrated that four members of the family of small leucine-rich-proteoglycans (SLRPs) of the extracellular matrix (ECM), named decorin, biglycan, lumican and fibromodulin, are deeply remodeled in mouse uterine tissues along the estrous cycle and early pregnancy. It is known that the combined action of estrogen (E2) and progesterone (P4) orchestrates the estrous ...
متن کاملLack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload
RATIONALE Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE We sought to analyze the role of the chemokine CXCL13 and its r...
متن کاملUsurped SLRPs: novel arthritis biomarkers exposed by catabolism of small leucine-rich proteoglycans?
Proteolytic degradation of articular cartilage macromolecules, including the large aggregating cartilage proteoglycan (aggrecan) and small leucine-rich proteoglycans (SLRPs), is a prominent pathophysiological feature of arthritic diseases such as osteoarthritis (OA). Molecular profiling and monitoring of soluble/circulating proteoglycan catabolites that may be released from the cartilage matrix...
متن کاملChemokines regulate small leucine-rich proteoglycans in the extracellular matrix of the pressure-overloaded right ventricle.
Chemokines have been suggested to play a role during development of left ventricular failure, but little is known about their role during right ventricular (RV) remodeling and dysfunction. We have previously shown that the chemokine (C-X-C motif) ligand 13 (CXCL13) regulates small leucine-rich proteoglycans (SLRPs). We hypothesized that chemokines are upregulated in the pressure-overloaded RV, ...
متن کاملAbnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis.
Small leucine-rich proteoglycans (SLRPs) regulate extracellular matrix organization, a process essential in development, tissue repair, and metastasis. In vivo interactions of biglycan and fibromodulin, two SLRPs highly expressed in tendons and bones, were investigated by generating biglycan/fibromodulin double-deficient mice. Here we show that collagen fibrils in tendons from mice deficient in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reproduction
دوره 125 4 شماره
صفحات -
تاریخ انتشار 2003